
Why the sum of the integers does not equal -1/12

The assertion in the YouTube clip

The assertion is that

1 + 2 + 3 + 4 + 5 + 6 + ... = − 1

12

with reasoning something like:

Let
S1 = 1 −1 +1 −1 +1 −1 ...
S2 = 1 −2 +3 −4 +5 −6 ...
S = 1 +2 +3 +4 +5 +6 ...

We add S2 to itself, displacing the terms one to the right as shown below, to obtain

2× S2 = 1 −2 +3 −4 +5 −6 ...
+1 −2 +3 −4 +5 ...

= 1 −1 +1 −1 +1 −1 ...

2× S2 = S1 (1)

Now subtract S2 from S as follows

S − S2 = 1 +2 +3 +4 +5 +6 ...
−( 1 −2 +3 −4 +5 −6 ...)
= 4 +8 +12 ... = 4S

3S = −S2 (2)

Giving S = −S2
3 = −S1

6

S1 oscillates between 0 and 1 so on average its value is 1/2, giving

S = 1 + 2 + 3 + 4 + 5 + 6... =
−1

12
(3)

This is complete bullshit as explained below. I hope it was created as a hoax, maybe April
1st?. But first, let’s assume the reasoning is OK and let’s use similar reasoning to see
what we can “prove” about S2 = 1− 2 + 3− 4 + 5− 6.... We can arrange the terms in 2
different ways to get:

S2 = (1− 2) + (3− 4) + (5− 6) + ... = −1− 1− 1− ... = −∞

or
S2 = 1− (2− 3)− (4− 5)− ... = 1 + 1 + 1 + 1 + ... = ∞

So we’ve now “proved” S1 = ∞ and S1 = −∞! Something must have gone wrong!
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Most mathematicians would simply say that the three sums, S1, S2 and S are clearly not
absolutely convergent so we are not justified in rearranging or grouping the terms in the
series. However that was not good enough for several of my family so I needed a more
down to earth explanation.

First note that S1 does not equal 1/2. True the partial sums, S1(n) alternate between 0
and 1 but the infinite sum, S1 is undefined. Now let’s look at the rest of the reasoning.

In each case it’s the . . . that are causing the problem. We can only ignore them if the
terms captured by . . . approach zero as n → ∞. We’ll explain this by working with finite
series of n terms and then see what happens as n → ∞. Note that we can, in theory, write
down all the terms in a finite series and we can rearrange the terms and sum them in any
order as long as we always include all the terms.

1st explanation

Assume n is even, we get an equivalent result if n is odd but selecting one or the other
simplifies the maths, to obtain the following sums with n terms

S1(n) = 1 −1 +1 −1 +1 −1 ... −1
S2(n) = 1 −2 +3 −4 +5 −6 ... −n
S(n) = 1 +2 +3 +4 +5 +6 ... +n

Then, as before:

2× S2(n) = 1 −2 +3 −4 +5 −6 +... +(n− 1) −n
+1 −2 +3 −4 +5 +... −(n− 2) +(n− 1) −n

= 1 −1 +1 −1 +1 −1 +... +1 −1 −n = S1(n)− n

2× S2(n) = S1(n)− n (4)

Now consider

S(n)− S2(n) = 1 +2 +3 +4 +5 +6 ... +n
−(1 −2 +3 −4 +5 −6 ... −n)

= 4 +8 +12 ... +2n
= 4( 1 +2 +3 ... +n/2)

So S(n)− S2(n) = 4× S(n/2) = 4× S(n)− 4(n+2
2 + n+4

2 + ...+ n)

3× S(n) = −S2(n) + 4

(
n+ 2

2
+

n+ 4

2
+ ...+ n

)
(5)
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Now lets compare the results or the finite series with the assertions in the previous section

from above : 2× S2(n) = S1(n) −n (4)
assertion : 2× S2 = S1 (1)

from above : 3× S(n) = −S2(n) +4(n+2
2 + n+4

2 + ...+ n) (5)
assertion : 3× S = −S2 (2)

We see that Equation (4) will not converge to Equation(1) as n → ∞, nor will Equation
(5) converge to Equation(2). In fact the differences between these, the error terms, grow
to infinity. The reasoning in the assertion was wrong because it replaced these terms by
. . . which were then ignored.

2nd, more rigorous and more general explanation

Define:

S1(n) =
n∑

i=1

(−1)i−1

S2(n) =
n∑

i=1

(−1)i−1i

S(n) =
n∑

i=1

i

Form 2×S2(n) as above by displacing one copy by one position to the right and summing
the individual terms, to obtain

2× S2(n) =

n∑
i=1

(−1)i−1i+

n+1∑
i=2

(−1)i−2(i− 1)

= 1 +

n∑
i=2

(−1)i−1(i− (i− 1)) + (−1)n−1n

= 1 +

n∑
i=2

(−1)i−1 + (−1)n−1n =

n∑
i=1

(−1)i−1 + (−1)n−1n

2× S2(n) = S1(n) + (−1)n−1n (6)

Now consider
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S(n)− S2(n) =

n∑
i=1

i(1− (−1)i−1)

= 2

n∑
i=1

e(i)i

Where e(i) is a function I have defined to be 1 if i is even, else 0, so

S(n)− S2(n) = 4

[n/2]∑
i=1

i

= 4S(n)−
n∑

i=[(n+2)/2]

i

Where [x] denotes the integral part of x. So we have

3S(n) = −S2(n) +
n∑

i=[(n+2)/2]

i (7)

All the above is rigorous and is true for all finite n.

Now we compare the finite sums developed here with the infinite sums in the assertion

from above : 2× S2(n) = S1(n) +(−1)n−1n (6)
assertion : 2× S2 = S1 (1)

from above : 3× S(n) = −S2(n) +
n∑

i=[(n+2)/2]

i (7)

assertion : 3× S = −S2 (2)

Again showing that the finite sums cannot converge to the infinite sums stated in the
assertion.

What about the connection with the Riemann zeta function

The Riemann zeta function is defined by

ζ(s) =
∞∑
n=1

1

ns
(8)

ζ(s) is defined for all, complex, values of s but the identity, Equation 8, only holds for
ℜs > 1. This is a process called analytical continuation where the function equals the
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infinite sum over a certain region, the whole half planne s > 1, and is designed to extend
smoothly over the remainder of the complex plane.

ζ(s) is, in fact, finite and well behaved at all points except at s = 1 where it becomes
infinite. But the sum in Eq 8 is infinite for all ℜs ≤ 1.

One particular value is ζ(−1) = −1/12 which is the result the Numberphile videos quote.
But this does NOT imply that

∞∑
n=1

1

n−1
=

∞∑
n=1

n = − 1

12

, since

ζ(s) ̸=
∞∑
n=1

1

ns
if ℜs ≤ 1
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