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Abstract

Projective and non-Euclidean geometry developed in the nineteenth century from

relative obscurity to being in the mainstream of mathematical research.

This essay tries to explain how this happened and what is the true significance of

these two important branches by the early twentieth century.

To do this we trace the development of geometry from the time of the ancient

Greeks up to the work of Poincaré and Hilbert in 1910. We then show how

projective geometry has come to be accepted as an overall encompassing geometry

with both Euclidean and non-Euclidean geometries as special cases. Also,

non-Euclidean geometry has become accepted as every bit as true and valid as

Euclidean geometry; as Poincaré says [41, p.104]: “One geometry cannot be more

true than another, only more convenient”.

This development of both projective and non-Euclidean geometries over the

nineteenth century has sparked a huge research interest so that both are studied for

their own sake and for the developments in other mathematical research areas that

they engender, such as the theory of continuous groups. In addition non-Euclidean

geometry is also studied as a potential model for the geometry of the universe.

Given the title, I have tried to write the essay as if I am writing in 1910, thus

“..projective geometry is now regarded..” in the first paragraph of the

Introduction, and similar uses of the present tense.
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Chapter 1

Introduction

The short answer to the question “what was the significance of projective and

non-Euclidean geometry by 1910?” is that projective geometry is now generally

recognised as the single overall geometry with both Euclidean and non-Euclidean

geometries being special cases obtained by projecting in different ways.

Non-Euclidean geometry is considered as valid and self-consistent as is Euclidean

geometry. Further, these two disciplines have brought geometry from almost a

dead subject to one of lively scientific interest and much research.

However the above answer is meaningless without context and the only way to

provide this is to describe some of the developments that led to the above view.

Before we even do that we need to be clear about some terms. We will use the

term Euclidean geometry to describe the geometry as formulated by Euclid in The

Elements [15]. Very specifically this includes what is generally referred to as the

parallel postulate that, given any line and any point not in the line, there is exactly

one line parallel to the given line.

We will use the term non-Euclidean geometry to refer to a geometry which rejects

Euclid’s fifth postulate.

This essay will therefore start with the initial development of geometry as a

science by the ancient Greeks and then trace its path up to 1910. We gloss over

the period from Euclid (c 300 B.C.) to the introduction of perspective by the

Renaissance artists since little of interest to this story happened during this time.

We then follow two parallel paths.
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8 1 Introduction

One path, starting with the French mathematicians: Monge, Poncelet, Chasles,

Gergonne, Cauchy, was the development of projective geometry. This was initially

built on the perspective work of the Renaissance artists and all described in a

descriptive manner much the same as the the way that Euclid developed geometry

in The Elements [15] and was often called descriptive geometry. It was further

developed through an algebraic approach by Möbius, Plücker and Cayley until

Cayley was able to state “Metrical [Euclidean] geometry is thus a part of

descriptive [projective] geometry and descriptive geometry is all geometry” [10,

p.592].

The other path started with numerous attempts to prove Euclid’s fifth postulate

and then, through the work of Saccheri, Lambert, Gauss, Bolyai (father and son)

and Lobachevskii, led to the development of non-Euclidean geometry a discipline

just as valid and self-consistent as Euclidean geometry. This was further extended

through the work of Beltrami, Riemann, Poincaré and others until Klein built on

the work of Cayley, above, and showed that non-Euclidean geometry could also be

shown to be a branch of projective geometry.

Thus all branches of geometry were united as part of projective geometry.

This essay discusses the evolution of these two branches in more detail before

discussing the way that geometry is viewed in 1910. This view includes the

axiomatic approach coupled with the duality theories where points and lines are

seen as completely interchangeable as long as the words describing connections are

changed. It also includes an approach to geometry through group theory.

A further, important, aspect of the way geometry is viewed is that it has become a

very active field of research and study whereas at the beginning of the nineteenth

century it was largely regarded as a dead subject in which everything that could

be said about it had already been said.

We also discuss the connection between geometry and the space in which we live.

Is space curved or flat? However, although Einstein’s theory of Special Relativity
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1 Introduction 9

and Minkowski’s theory of Space-Time show specific examples where space may

not be truly Euclidean on a local scale, there is still no indication whether our

overall universe is Euclidean or non-Euclidean, nor are we likely to ever be able to

find out.
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Chapter 2

Geometry to End 18th Century

2.1 Greek Geometry

The geometry that is usually taught in high schools is essentially unchanged from

that developed by the Greeks.

Ancient civilisations before the Greeks, especially the Babylonians and Egyptians,

were already using a form of geometry. For example the Egyptians knew the

properties of some Pythagorean triangles so that they could construct right angles

using lengths of wood or rope. The accuracy with which this was done can be seen

in the incredible precision of the pyramids constructed more than 4,500 years ago.

Precise though this was it was essentially a basic construction tool rather than an

academic exercise.

The first attempt to develop geometry into an academic discipline started with

Thales of Miletus (c 625-547 B.C.). In the words of George Allman [2, p.7], he

“introduced abstract geometry, the object of which is to establish precise relations

between the different parts of a figure, so that some of them could be found by

means of others in a manner strictly rigorous”.

This geometry was further developed by many other Greek philosophers and

mathematicians including Pythagoras, Plato and Eudoxus until Euclid formalised,

extended and compiled all this body of knowledge circa 300 B.C. in The

Elements, [15] 1 .

1Halsted gives a fascinating account of the way in which The Elements came, via Islamic schol-

ars, to be eventually published in the West.
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12 2 Geometry to End 18th Century

Other Geek mathematicians, especially Apollonius of Perga (born c 230 B.C.) and

Archimedes (c 287-212 B.C.), further elaborated this work. Apollonius produced

his Treatise on Conic Sections [4], quoted by the French mathematician Chasles as

containing “The most interesting properties of the conics”.

Among the many results that Archimedes was able to prove we single out his

remarkable determination of upper and lower bounds on the ratio of a circle’s

circumference to its diameter, π, by an iterative method that can theoretically be

continued to any degree of precision. In fact there was a very natural limit due to

the need to perform all the calculations by hand and without the benefit of

modern mathematical notation nor of a positional number system. Nevertheless

Archimedes developed the following result : “The ratio of the circumference of any

circle to its diameter is less than 31
7

and greater than 310
71

” [5, p.93], which gives π

to significantly better precision than one part in one thousand..

2.2 Early ideas of Perspective and Projection

Ideas of projection were developed as the Greeks tried to map the known world.

Eratosthenes (c. 275–195 B.C.) is well known for calculating the radius of the

earth by measurements of the shadow projected by a vertical pole at different

latitudes. Later Claudius Ptolemy (c. 90–168) introduced perspective projection

into his maps. Mapmaking continued to evolve and reached a golden period in the

16th and 17th centuries with the work of the Flemish cartographers of whom

Mercator is perhaps the best known. The Mercator projection that he used in his

“... The book that monkish Europe could no longer understand was then taught in Arabic by

Saracen and Moor in the Universities of Bagdad and Cordova.

“To bring the light, after weary, stupid centuries, to western Christendom, an Englishman, Adel-

hard of Bath, journeys, to learn Arabic, through Asia Minor, through Egypt, back to Spain.

Disguised as a Mohammedan student, he got into Cordova about 1120, obtained a Moorish copy

of Euclid’s Elements, and made a translation from the Arabic into Latin” [8, Translator’s Intro-

duction, p.1] .
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2.2 Early ideas of Perspective and Projection 13

1569 world map is a cylindrical projection such as one would obtain by wrapping a

cylinder of paper around the earth and projecting from the axis of the earth onto

the cylinder which is then unrolled into a flat piece of paper.

In parallel with this progress in cartography, artists were exploring ideas of

perspective (from perspico — I observe) to produce more realistic paintings. This

started in the early 15th century with Philippo Brunelleschi, was further developed

by Piero della Francesca about 1470 and fully developed by Dürer into a

mathematical theory of perspective.

A simplified form of this is shown in Figure 2.1 where we imagine viewing a

horizontal scene, the plane (x, y, 0), through an eye placed at C = (0, YC , ZC).

This forms an image in the plane (x, 0, z) which becomes the artists canvas. It was

through use of such a mechanism that artists were able to convey a realistic

representation of perspective. Some properties of this construction can be readily

proved: points and straight lines in the scene are transformed into points and

straight lines in the canvas. Parallel lines in the scene all meet along a line, the

vanishing line, in the canvas, this is a line in the canvas at the same height as the

eye, (x, 0, ZC). It is the line to which all points at infinity in the scene are mapped.

This theory of perspective was instrumental in rendering paintings more lifelike

and realistic. Similarly projection was essential for producing maps of the world.

But these were not considered as different forms of geometry 2 so essentially the

geometry of the ancient Greeks remained the definitive form.

2For example Ruskin’s book Elements of Perspective[46], a book aimed at artists, is subtitled

Intended to be read in connexion with the first three books of Euclid.

B8428581 Mark G Watts



14 2 Geometry to End 18th Century

Figure 2.1: Illustrating the theory of perspective developed by Dürer. The red line

shows how the point, P, in the scene is transformed into P’ in the canvas
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Chapter 3

Projective Geometry

3.1 Monge and the Start of Projective Geometry

Much of the early work in modern projective geometry started in France

immediately after the revolution. This was partly because the new republic needed

geometers to design forts and other weapons of warfare.

Monge [34] started down essentially this line and was soon a professor, teaching his

methods to military students. He developed an approach known as descriptive

geometry whereby a three dimensional object is represented by its projections onto

orthogonal planes and properties worked out by considering each plane separately.

This descriptive geometry helped to better visualise geometric objects and could

greatly simplify proofs and enable less able students to develop ideas in three

dimensional geometry.

As projective geometry developed following Monge, there were many claims and

counter claims about who made the major contribution. We do not attempt here

to follow every development or to postulate on priority. We will certainly not

mention all the actors. However we believe it is instructive to follow the

development of two main themes, both integral to projective geometry:- duality

and cross ratio. These were both being developed at the same time and interact

with each other so there is some overlap in this approach but the two themes are

both central to an understanding of the status of geometry by 1910.
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16 3 Projective Geometry

3.2 Duality

3.2.1 Poncelet

In 1822 Poncelet published his memoire on projective geometry, [44]. In it he

develops projective geometry as a separate mathematical discipline. His concept of

projection is similar to that of the artists outlined above, see Figure 2.1, but the

scene and canvas are both in the same plane, as is the eye or projection point.

Poncelet uses projection from a single point to prove many theorems for conics

which are relatively easy to prove in the special case of a circle. He proves the

theorem for a circle then argues that projection about a suitable point can

transform any conic into a circle while transforming individual points and straight

lines into points and straight lines so many theorems can be simply extended from

a circle to a general conic. 3 As an example Poncelet proves a duality between

’pole’ and ’polar’ which is illustrated here for an ellipse, Figure 3.1.

Figure 3.1: Illustrating the duality of pole and polar for an ellipse

For any ellipse we choose a point outside the ellipse and call this point, P , a pole.

Construct two tangents from P to touch the ellipse at points T and T ′. The line

3This is especially true of theorems involving multiple points in a straight line or multiple lines

intersecting at a single point. It does not apply to any theorems concerning the magnitude of a

distance or an angle
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3.2 Duality 17

TT ′ when extended in both directions is called the polar, p. Now chose any point

S on p outside the ellipse, call it a new pole and create a new polar, QQ′, by

constructing the tangents SQ and SQ′. QQ′ will pass through the original pole, P .

Thus there is a duality between pole and polar.

This is proved for the circle in Appendix A and can then be extended to all ellipses

with the pole outside the ellipse by the simple projection defined above. Extension

to other conics and to cases where the pole is inside the conic, or otherwise

situated such that it is impossible to construct two real tangents to the conic, are

dealt with by Poncelet as he introduces concepts such as ideal chords and his

principle of continuity. This is significantly more complicated, maybe even vague,

and its justification is still open to some controversy.

A book such as Poncelet’s required approval from the French Académie Royale des

Sciences and Poncelet has included the report which was prepared by Poisson,

Arago and Cauchy. Cauchy chaired the commission and was the most eminent

mathematician of the three reviewers (probably the most eminent in France) so we

can assume that this mainly expresses his ideas. While the report recommends

publication, it does express concern with parts and Cauchy encourages a more

algebraic approach including using complex numbers as a way of removing the

difficulties with ideal chords and the principle of continuity. Thus Cauchy started

to move projective geometry towards a more algebraic approach and may even

have anticipated the later work of Plücker and Cayley.

3.2.2 Gergonne

Gergonne [19] further extended Poncelet’s concepts to demonstrate that a

complete duality exists between points and lines provided that the words used to

denote connections — intersect, lie on, cross, meet etc — are adjusted accordingly.

He cleverly laid out his results in two columns, one referring to lines connecting

points and the other referring to points as the intersection of lines. In this way he

was able to (almost) point out the complete duality between points and lines. This
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18 3 Projective Geometry

is a much deeper insight than that between pole and polar and later became the

basis of the modern axiomatic approach to projective geometry.

The word “almost” was introduced above because Gergonnes work suffered from

two flaws. The first was quickly rectified by Gergonne himself but the second

required the algebraic approach of Plücker to resolve.

When we consider the dual of a curve we must consider the pole and polar. Thus if

a curve has n tangents from a given point, the pole, its dual will cross the resulting

polar at n points. Gergonne introduced the terms degree and class defined as

follows. The degree of the curve is the maximum number of points at which it is

intersected by a straight line. The class of the curve is the maximum number of

tangents to the curve from a fixed point.

For any curve of degree n the class equals n(n− 1). Conics are of degree 2 so also

of class 2.

Gergonne’s first flaw was that he did not originally distinguish degree from class.

He used the same term, order, for both since he was clearly thinking in terms of

conics where degree and class are both equal to 2. This was quickly corrected

simply by introducing the terms degree and class. The second flaw was more

serious and again it only showed up for curves of degree higher than 2.

3.2.3 Plücker

One of the beauties of duality is that if it is applied twice to a curve the resultant

curve should be the same as the original. However consider forming the dual of the

cubic, a curve of degree 3 so class 3(3− 1) = 6. The class is the maximum number

of tangents from a fixed point so, when we form the dual, this becomes the

maximum number of points in which the curve is intersected by a straight line.

Therefore the degree of the dual should be 6. Worse follows! The class of the dual

should now be 6.5 = 30. If we now form the dual of this dual its degree should

therefore be 6(6− 1) = 30. We have now applied duality twice to a curve of degree
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3.2 Duality 19

3 and obtained, instead of the original curve, a curve of degree 30!

This anomaly was resolved by Plücker [38] by showing that multiple points and

cusps have to be treated especially carefully when passing over to the dual image.

Multiple points and cusps are called singular points. The dual of a double point

(point where the curve crosses itself) is a double tangent (line which touches the

curve at two points). The dual of a cusp is a point of inflection. Plücker showed

that the dual of a curve of degree n with d double points and c cusps is a curve of

degree n(n− 1)− 2d− 3c. With this correction the dual of the dual of a cubic is

again a cubic. The same is true for higher degree curves.

Salmon wrote two excellent textbooks in 1848 and 1852 which formalise and

combine all this earlier work, and more, using an algebraic approach with

homogeneous coordinates throughout. One deals primarily with conic sections [49]

and the other with curves of higher degree, the higher plane curves [50].

3.2.4 Möbius

Whereas Monge, Poncelet, Gegonne and other, mainly French, mathematicians

had used a descriptive approach to projective geometry, Plücker used an algebraic

approach based on the equations of the curves. This approach was already

advocated by Cauchy in his review of Poncelet’s memoire [44] but it was first

taken up seriously by Möbius. He introduced a concept called barycentric

coordinates, which he later simplified to projective, or homogeneous, coordinates,

where each point in a plane was identified by three coordinates rather than the

usual two — only the ratios mattered. This enabled him to identify the point at

infinity in a natural way and not as some limiting process. The point at infinity

therefore became a specific point in the projective plane so statements about lines

and points became simpler and more symmetric. For example any two points

define a line, any two lines meet in a single point. We no longer need to make an

exception in the case of parallel lines because their meeting point is the point at

infinity which has become a perfectly valid point.

B8428581 Mark G Watts



20 3 Projective Geometry

Homogeneous coordinates are defined as follows. Consider the equation of a curve

in a plane. This will be a function of powers of x and y. Replace each instance of x

by x/z and each instance of y by y/z and multiply through to remove inverse

powers of z. The result will be a homogeneous equation in the three variables x, y

and z. As an example consider the general quadratic equation

ax2 + by2 + cxy + dx+ ey + 1 = 0

Introducing homogenous coordinates this becomes the homogeneous equation

ax2 + by2 + cxy + dxz + eyz + z2 = 0

3.3 Cross Ratio

3.3.1 Geometrical Invariants

Veblen and Young [53, §1] start their book on projective geometry with the

statement

“Geometry deals with the properties of figures in space. Every such figure is made

up of various elements (points, lines, curves, planes, surfaces etc.), and these

elements bear certain relations to each other (a point lies on a line, a line passes

through a point, two planes intersect etc.). The propositions stating these

properties are logically interdependent, and it is the object of geometry to discover

such propositions and to exhibit their logical interdependence.”

Some of the properties Veblen and Young refer to are invariants:- they remain

constant under certain transformations. In the two dimensional geometry of Euclid

the possible transformations of the plane are rotation about a fixed point and

translation. Under these transformations points are mapped to points and straight

lines are mapped to straight lines. Further, Euclidean distance, defined by

applying Pythagoras’ theorem, is conserved. Because distance is conserved we can

draw identical triangles in both the un-transformed and transformed systems so

that angles must also be conserved.
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3.3 Cross Ratio 21

In projective geometry we define a perspectivity as a single projection about a

given point as shown in Figure 3.2. A projectivity is then defined as the product of

one or more perspectivities.

Figure 3.2: Illustrating a perspective transformation or perspectivity. Points

A,C,B,D on line l are mapped to A′, C ′, B′, D′ on line l′ via projection in O.

A projectivity will send straight lines to distinct straight lines and points to

distinct points. It will retain the order of the points on a line in the sense that if C

is between A and B then C ′ will be between A′ and B′. However it will not

preserve lengths or angles. Lengths and angles are not invariants in projective

geometry.

3.3.2 Cross Ratio Defined

A further conserved property in projective geometry is the cross ratio. We will

introduce this by first defining the harmonic ratio, following Poncelet [44, p.12]
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22 3 Projective Geometry

Referring to Figure 3.2 we say that C and D cut the line AB harmonically if 4

AC

BC
= −AD

BD

and it also follows that A and B cut the line CD harmonically. A little

rearrangement gives
2

CD
=

1

AD
+

1

BD

So that CD is the harmonic mean of AD and BD.

Still referring to Figure 3.2 we define the anharmonic ratio, or cross ratio, of the 4

points A,C,B,D as

(A,B;C,D) =
AC/BC

AD/BD
=
AC ×BD
AD ×BC

So that the cross ratio equals −1 if C and D cut the line AB harmonically. This is

the reason the cross ratio was originally called the anharmonic ratio: it measures

the deviation from a harmonic arrangement of four points on a line.

It is easily proven that any perspectivity preserves the cross ratio of any four

distinct points on a line. Therefore any projectivity, being the product of one or

more perspectivities, will also preserve this ratio.

Poncelet states that Pappus of Alexandria was already aware of some properties of

cross ratio but attributes to Brianchon (1807) the proof that cross ratio is

invariant under a perspectivity.

3.3.3 Chasles and Cross Ratios Defined by Angles

Chasles [11, p.11] showed that we can also define cross ratio in terms of the angles

subtended at the point of perspectivity. Thus, still referring to Figure 3.2, he

4I have changed the terminology slightly since Poncelet appears to refer to the length of the

line from A to C (to the right of A) as CA. I have used AC for this length to be consistent with

other authors, however the result is unchanged since all the negative signs appear in pairs. He

does, however, appear to have missed a negative sign, I believe because he is thinking of a different

arrangement of points from that shown in his Figure [44, Fig. 2], which is essentially the same as

Figure 3.2, above.
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3.3 Cross Ratio 23

proved 5

sin(AOC)

sin(AOD)
÷ sin(BOC)

sin(BOD)
=
AC

AD
÷ BC

BD

This equation immediately proves that cross ratio is preserved for all projections

about a point onto any straight line. It also shows that cross ratio of angles is

preserved as the point of projection is moved, with the four points held constant

on a line. Thus this relation is another example of duality.

3.3.4 Cayley and the Absolute, Link to Euclidean Geometry

Projective geometry is normally described as non-metrical because distances and

angles are not preserved under projection. However Cayley [10] argued that cross

ratio can be used to define a measure of length if two of the points are fixed. The

two points are the points of intersection with a certain conic called the Absolute.

“This absolute configuration must clearly be a curve which every straight line cuts

in two points, real or imaginary, and to which two tangents can be drawn from

every point: i.e. it must be a conic. The absolute in the plane is therefore a fixed

conic, ... in the geometry of Euclid the absolute must be a degenerate conic

consisting of a pair of points, viz. the circular points at infinity” [17, p.157] [51].

With this definition of the absolute Cayley was able to state [10, p.592]

“Metrical [Euclidean] geometry is thus part of descriptive [projective] geometry

and descriptive geometry is all geometry”.

Thus Cayley had shown that Euclidean geometry was a special case of projective

geometry. As we discuss later Klein then expanded on this to show that

non-Euclidean geometry is also a special case of projective geometry. and

produced what is know referred to as the Cayley-Klein metric.

5Chasles uses lower case symbols for points and upper case for lines. I have changed this for

consistency
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Chapter 4

Non-Euclidean Geometry

4.1 Euclid’s Postulate

Euclid’s The Elements [15] covers thirteen books containing all of the arithmetic

and geometry known by about 300 B.C., for example it contains his famous

number theory proof that there are infinitely many prime numbers (Book IX,

Proposition 20).

However the majority concerns geometry and it starts in Book 1 with definitions,

postulates and common notations.

We will not quote all 23 definitions but the last is of particular importance to us

“parallel straight lines are straight lines which, being in the same plane and being

produced indefinitely in both directions, do not meet one another in either

direction”.

The common notations are 5 supposedly self evident truths such as “Things which

are equal to the same thing are also equal to one another”.

There are 5 postulates which are quoted in full below:

1. To draw a line from any point to any point

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any centre and distance.

4. That all right angles are equal to one another.
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5. If a straight line falling on two straight lines make the interior angles on the

same side less than two right angles, the two straight lines, if produced

indefinitely, meet on that side on which the angles are less than two right

angles.

Postulates 1 and 2 would today be written something like

1. Any two non-coincident points uniquely define a straight line.

2. A straight line can be continued indefinitely without intersecting itself.

Postulate number 5, the parallel postulate, has been the subject of much debate

ever since The Elements were first written. There is a strong suggestion that

Euclid was not sure of the validity of this postulate since he placed it last and

ordered his propositions (theorems) such that early ones did not depend on the

parallel postulate. It is only in proposition 29 that the parallel postulate is first

used. The parallel postulate has been stated in many different, but essentially

equivalent, ways. One form is what is generally known as Playfair’s axiom: “given

any line and a point in the same plane but not on the line, there is exactly one line

through the point which is parallel to the given line” 6.

There are many consequences of the parallel postulate which are often taken for

granted, such as that the interior angles of any triangle sum to two right angles or

180◦. Also that triangles can be scaled and still retain the same angles — similar

triangles.

Many mathematicians, starting with the ancient Greeks:- Diodorus, Proclus and

Ptolemy; through the Persians to the great French mathematician, Legendre

(1752-1833), have tried to prove the parallel postulate from the first 4 postulates

but to no avail. A good summary of these accounts is given in Euclid’s The

Elements, Book 1, Note on Postulate 5 [15, pp.202-220]. All these attempts to

6In fact Playfair writes this as “That two straight lines which cut one another cannot be both

parallel to the same straight line” and attributes this statement to Ludlam [37, p.291] .
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4.2 Saccheri 1667-1733 27

prove the parallel postulate show how deep seated was the common belief in its

truth.

4.2 Saccheri 1667-1733

Saccheri [48] took a somewhat different approach, aiming for a proof by

contradiction, reductio ad absurdum. He was also totally convinced of the truth of

the parallel postulate so he set out to develop a self-consistent geometry based on

the first four postulates but denying the fifth. The intent was that he would at

some point find an inconsistency which would automatically justify the parallel

postulate.

In 1733 he published his Euclides ab omni naevo vindicatus, [Euclid freed of every

fleck ], subtitled a geometric endeavor in which are established the foundation

principles of universal geometry.

Saccheri starts by assuming the first 4 postulates and refuting the fifth. He then

develops very simple geometrical arguments based on the simple construction,

Figure 4.1, of a straight line, AB, on which he raises 2 equal perpendiculars, AC

and BD, and joins CD. Use of the parallel postulate would show this to be a

rectangle so CD = AB but Saccheri does not assume this. Instead he shows that

the angles at C and D must be equal and distinguishes 3 cases 7:

har: right angle, C = D = π/2, CD = AB

hao: obtuse angle, C = D > π/2, CD < AB

haa: acute angle, C = D < π/2, CD > AB

He then goes on to show that case har implies that all triangles will have angles

summing to π, hao implies they will always sum to values > π and haa that they

will always be < π. He is then able to show that case hao produces a contradiction

7I have used the abbreviations of the names Saccheri gives to each of these hypotheses, respec-

tively: hypothesim anguli recti, hypothesim anguli obtusi, hypothesim anguli acuti
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Figure 4.1: The quadrilaterals constructed by Saccheri (left) and Lambert (right)

with the right angles marked. Saccheri inserts the line MH where M and H are

the mid points of AB and CD respectively and then proves that angles AMH and

CHM are right angles so Lambert’s quadrilateral is exactly the same as the right

half of Saccheri’s quadrilateral

and, erroneously, proves that haa also has a contradiction. That he gets to this

latter result despite all the good earlier work is probably due to his total belief in

the parallel postulate. He needed to prove it true so was somewhat blind to the

error in his arguments. This is somewhat equivalent to the well known concept of

“flinching” in experimental work where the experimentalist knows the result he

expects and keeps measuring until he arrives at it.

Saccheri talks of wanting to tear out by its very roots “the hostile hypothesis of

acute angle”. Halsted comments [21, p.101] “Saccheri was always fighting against

the heretical results of his own logic on behalf of what he considered God’s truth.”

In fact Saccheri had gone a long way towards discovering hyperbolic geometry,

over 100 years before Lobachevskii’s famous paper which will be described later.
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4.3 Lambert 1728-1777

It is not clear how much Lambert knew of Saccheri’s work. He starts from a

different position with a diagramme similar to that later used by Lobachevskii, see

Figure 4.2 but then in section 39 [14, p.180] introduces a quadrilateral very similar

to that used by Saccheri Figure 4.1 and lists 3 hypotheses, he will develop, namely

Hypothesis 1. BDC = 90 degrees

Hypothesis 2. BDC > 90 degrees

Hypothesis 3. BDC < 90 degrees

So this part of his work is very similar to Saccheri’s.

He shows, as had Saccheri, that hypothesis 2 leads to a contradiction if we retain

Euclid’s second postulate that lines can be continued indefinitely without meeting.

He failed to prove that his hypothesis 3 (acute angle) led to a contradiction and

thereby developed a new self-consistent geometry, now known as hyperbolic

geometry.

Lambert also showed that a self-consistent geometry can be developed based on

the hypothesis of an obtuse angle, hypothesis 2, if he relaxed Euclid’s second

postulate and allowed the radius to be imaginary. This is similar to the geometry

on the surface of a sphere and is now called spherical geometry.

Lambert was able to prove that in both hypotheses 2 and 3 the angles of a triangle

did not sum to two right angles. If the angles are denoted by α, β and γ he proved

that α + β + γ − 2π is positive for hypothesis 2 (obtuse angle) and negative for

hypothesis 3 (acute angle) and, in both cases, is proportional to the area of the

triangle. This then led him to the conclusion that there must be an absolute

measure of length since there is obviously an absolute measure of angle.

It appears that Lambert was not satisfied with this work, as he had set out, and

failed, to find an inconsistency which would validate Euclid’s fifth postulate, and

he did not publish it in his lifetime. Frankland [16] suggests that the work was
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completed in 1766. It was published posthumously in 1786 as “Die Theorie der

Parallellinien” and was then republished by Engel and Stäckel [14] in 1895 8

Lambert makes the following comment on his failure to disprove his 3rd

hypothesis [16, p.25]:

“This consequence possesses a charm which makes one desire that the Third

Hypothesis be indeed true!

“Yet on the whole I would not wish it true, notwithstanding this advantage (of an

absolute standard length), since innumerable difficulties would be involved

therewith. Our trigonometric tables would become immeasurably vast; the

similitude and proportionality of geometrical figures would wholly disappear, so

that no figure can be represented except in its actual size; astronomy would be

harassed.”

4.4 Lobachevskii

Lobachevskii is today generally regarded, along with Gauss and Bolyai, as being

the founder of hyperbolic geometry. His translator, Halsted, tells us that [29, p.8]

“the first public expression ... dates back to a discourse at Kasan on February 12,

1826”. His paper was then published, in sections, in Russian, in the Kasan

Messenger, between 1829 and 1830 [20, p.120], and totally ignored outside of

Russia. Lobachevskii then translated this into German and republished it in a

German journal in 1840 and this is the version that is now most known.

Lobachevskii’s starting point is his definition of parallel and angle of parallelism,

Figure 4.2. He splits lines through A into 2 classes, those cutting BC and those not

8Despite an extensive literature search I have been unable to find an English translation of

Lambert’s paper. This is a great shame since it was originally written in 1766, fully 60 years

before Lobachevskii first started to share his views on hyperbolic geometry, and therefore should

be considered the first publication on non-Euclidean geometry.
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cutting, and calls the boundary line, AH, between the 2 classes the parallel line. 9

The angle of parallelism, Π(p), is defined as the angle between AH and AD, the

perpendicular to BC. Π(p) is a function of p, the perpendicular distance of A from

BC. If Π(p) = π/2 we clearly have Euclidean geometry. Lobachevskii focuses on

the case where Π(p) < π/2.

It is important to notice that, if we define line AH to be parallel to BC, then the

continuation of HA beyond A will not, in general, be parallel to BC.

Figure 4.2: Definition of parallel and the angle of parallelism, Π(p)

He defines a horocycle as a curve such that the perpendicular bisectors of all its

chords are parallel, see Figure 4.3. Euclidean geometry holds on a horocycle so he

is able to show that the length of a horocycle between two parallel lines reduces as

e−x where x is the distance along an axis between the two horocycles. See

Figure 4.4 which gives s′ = se−x.

From the relation s′ = se−x, Lobachevskii is able to derive the relationship

tan
1

2
Π(x) = e−x (4.1)

9Lobachevskii makes a distinction between “parallel” and “not cutting” which had not been

made before. In fact these terms were almost used interchangeably in Euclidean geometry.
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Figure 4.3: Illustrating the definition of a horocycle. EF , GH and JK are parallel

in the definition of Lobachevskii

Figure 4.4: Illustrating reduction of a horocycle between parallel lines, s′ = se−x

And he was then able to develop relationships between the angles of a triangle,

valid in hyperbolic geometry 10, which reduce, for small triangles, to the sine rule,

the cosine rule and the condition that the angles of a triangle sum to 180◦.

He also shows that his equations reduce to identities pertaining to spherical

triangles if lengths are all multiplied by
√
−1 11. This is similar to the result

obtained by Lambert.

Lobachevskii’s fundamental relationship which was shown as Equation 4.1 directly

10These relationships include Π(x), the angle of parallelism, so are dependent on the size of the

triangle. This explains Lambert’s concern over the size of trigonometric tables, see Section 4.3
11This will replace the hyperbolic functions by trigonometrical functions.
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relates an angle to a distance and so this again shows that hyperbolic geometry

directly implies an absolute measure of distance.

4.5 Gauss

Gauss is now credited, along with Lobachevskii and Jànos Bolyai, with the

discovery of non-Euclidean geometry although he published very little during his

lifetime. His unpublished work, discovered after his death, show that his ideas

were very well developed.

While he was working as a geodesist, directing the triangulation survey of

Hannover, Gauss developed a measure of the curvature of a plane surface. He

defined Gaussian curvature as 1
r1r2

where r1 and r2 are the greatest and least radii

of curvature at a point on a surface. In this he is relating his curved surface to a

third, orthogonal, dimension since he was actually interested in the curvature of

points on the surface of the earth.

From Gauss’s definition of curvature we see that the curvature on both the inside

and outside surface of a sphere must be positive, that on the surface of a cylinder

must be zero. Negative curvature will be obtained near a saddle point where the

curvature in one plane is positive and in the orthogonal plane negative.

To derive his expression for curvature, Gauss assumes that the position on a

curved surface, (x, y, z) can be expressed as a function of two variables, u, v 12 and

writes a line element in the form

ds =
√
Edu2 + 2Fdudv +Gdv2

where E, F and G are sums of products of the partial derivatives of the x, y and z

coordinates, with u and v. He then writes the curvature, k, as an expression

involving just E,F,G and their first and second derivatives with respect to u and

12Gauss uses p, q but I use u, v here for consistency with later authors such as Beltrami, Sec-

tion 4.8.
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v. [18, p.20]

“The analysis developed in the preceding article thus shows that for finding the

measure of curvature there is no need for finite formulae, which express the

coordinates x, y, z as functions of the indeterminates u, v; but that the general

expression for the magnitude of any linear element is sufficient.” — As long as you

can find E,F,G as functions of u and v you can calculate the curvature.

Significantly, Gauss had shown that, although he had introduced a third

dimension, the equation for the curvature does not involve this third dimension.

This was later expanded by Riemann who developed a general theory of curvature

of manifolds.

Gauss showed that the curvature of a triangle on a curved surface can be obtained

simply by summing its angles “The excess of the sum of the angles of a triangle

formed by shortest lines over two right angles is equal to the total curvature of the

triangle.” [18, p.48] 13.

He illustrated this theory via direct measurements between 3 hilltops in Germany,

one side of was over 100 km, where the excess in the sum of the angles over two

right angles is 14.85 seconds of arc.

4.6 Bolyai

Jànos Bolyai developed a theory of parallels [8] independently from, but

remarkably similar to, that of Lobachevskii. It was originally published in 1832 as

an appendix to a joint work with his father, Farkas (Wolfgang) Bolyai. This in

turn contains an appendix to the appendix, written by Farkas, which points out

many of the similarities between his son’s work and that of Lobachevskii. For

example, Bolyai introduces a concept called an L-curve, similar to Lobachevskii’s

13Naturally this must be normalised for the size of the triangle, Gauss explains how the units

should be chosen to achieve this.
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horocycle, and an F-surface, similar to the horosphere, which is a surface of

revolution of the L-curve. The useful property of the L-curves (and of horocycles)

is that Euclidean geometry holds on them and therefore properties in hyperbolic

geometry can be related to trigonometric functions.

Since Bolyai’s conclusions are similar to Lobachevskii’s we will not discuss them

further here but one significant difference in their approaches is that Lobachevskii

uses a descriptive approach, in which he derives theorems in a manner similar to

the approach taken by Euclid, whereas Bolyai uses an algebraic approach and

develops many of his results through application of calculus.

4.7 Riemann

One of Riemann’s most celebrated works in geometry is his

Habilitationsvorstrag [45], the lecture with which he defended his doctoral thesis,

presented in front of Gauss and a full lecture theatre of academics and students.

This paper contains only one equation so he has to express all his profound ideas

in words. It develops a totally new approach to geometry based on the concepts of

multiply extended quantities and of manifolds. The concept of multiply extended

quantities was used to build up the notion of an n dimensional space without

having to resort to Cartesian or any other coordinate system. The concept of a

manifold described a portion of space which could have a totally different

structure, and curvature, from its neighbouring manifolds, except, of course, that

the whole of space must be continuous.

In this lecture, Riemann developed a theory of a generalised space which could

have any curvature but without mentioning hyperbolic geometry. Several of his

audience were from the Philosophy department, of which Mathematics was a part,

and did not need to be shocked by such outrageous ideas as non-Euclidean

geometry. Nevertheless Riemann specifically develops his ideas of non-zero

curvature. He considers both positive and negative curvature and points out that
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geometries with positive curvature can be wrapped around the surface of a type of

sphere and so are finite provided Euclid’s second is also rejected. This became

known as Riemannian or spherical geometry14

He also shows that negative curvature is just as valid as is zero curvature so laying

the foundation for the legitimisation of hyperbolic geometry.

Riemann’s single equation in his Habilitationsvorstrag is an expression relating

curvature to the length of a line element. He starts from, but does not state in this

lecture, the assumption that the line element can be written in the form 15

ds =
√∑

aijdxidxj (4.2)

He then states that, if we write α for the curvature, this expression for the line

element becomes

ds =
1

1 + α
4

∑
x2i

√∑
dx2i (4.3)

Or, writing 1
r2

for the curvature, α, we obtain in two dimensions

ds =

√
dx2 + dy2

1 + (1/4r2)(x2 + y2)
(4.4)

the form in which it is quoted by Gray [20, p.200].

Helmholtz [22, p.48] explores the validity of the assumptions contained in

Equation 4.2. He makes 4 assumptions:-

14This is not exactly the same as the geometry of the surface of the earth since geodesics meet

in two points on the earth (e.g. all lines of longitude meet at the North and South poles). This

would also be a violation of Euclid’s first postulate which Riemann retains.
15Klein [27, p.86] clarifies this by saying “...he only wants to say that there exists an invariant

of the ‘form’
∑

aijdxidxj ; he does not mean to imply that the three-dimensional space necessarily

exists as a curved space in a space of four dimensions.”
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• Continuity

• Rigid bodies can move freely (implies constant curvature)

• Free mobility of points

• Invariance under rotation (called mondromy by Helmholtz)

and then states “it follows from pure analysis that a homogeneous function of the

second degree of the magnitudes du, dv, dw exists...” . With this he shows that

Equation 4.2 is the simplest general form satisfying his 4 assumptions.

Riemann had introduced a new concept in geometry, to quote Gray [20, p.201] “To

him, geometry was to do with concepts like length and angle which could be

intrinsically defined on a surface or space of some sort. It follows that there are

many geometries, one for each kind of surface and each definition of distance...”.

Thus Riemann had broadened the whole of geometry and in the process had given

his stamp of approval, as the leading mathematician of his generation, to

non-Euclidean geometry as a valid geometry.

4.8 Beltrami and Models of Hyperbolic Geometry

In two remarkable papers in 1868 [6] [7], Beltrami further developed Riemann’s

ideas about curvature and in so doing developed relationships between hyperbolic

geometry and models which can be visualised in a Euclidean disc or sphere. Thus

he was the first to develop models of hyperbolic geometry. He developed all this in

terms of transformations of coordinates so there are no diagrammes to show the

nature of the underlying projections.

In his first paper, usually referred to as his Saggio [6], essay, he develops the

mathematics of what is know known as the Klein disc, see Section B.1. In the

second paper [7] he develops several other models including the conformal model

which is now referred to as the Poincaré disc, Section B.2.
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This work was largely ignored at the time of publication and both the above and

other models were later rediscovered or further developed by others and Beltrami’s

name has largely been forgotten as the originator of these models.

They are described in more detail in Appendix B.

4.9 Klein

Klein realised that Cayley’s unification of projective and Euclidean geometries, see

Section 3.3.4, could be further extended to unite non-Euclidean geometry with

projective geometry. This can be done by choosing a different absolute but Klein

proceeds from first principles by first defining how to set up a measure of length,

then defining a scale which is exponential and defining the length as a logarithmic

measure on this scale. Thus he defines the distance between two elements as

c log
z

z′

and interprets z/z′ as a cross ratio when two other points on the line have been

moved to z = 0 and z =∞, i.e. log z = ∓∞.

This works for real one dimensional lines where the line passes through the point

z = 0. In two dimensions Klein simply uses complex lines to describe lengths and

obtains a result similar to that of Cayley.

Kleins use of cross ratio and the Cayley-Klein metric are illustrated in a

diagramme of the Klein disc in Section B.1.

4.10 Poincaré

Poincaré was a true polymath and made significant contributions in many fields of

mathematics, physics, engineering and philosophy. He was able to link supposedly

unconnected fields. Thus his work on what he called fuschian groups [40] led to his
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independent development of the Poincaré disc model, see Section B.2.

Fuschian groups are a class of elliptic functions (doubly periodic functions) which

are invariant under a group of mappings of the form

z 7→ az + b

cz + d
, where ad− bc 6= 0 (4.5)

This type of bilinear transformation is called a Möbius transformation and

Poincaré realised that it had the following characteristics

• It preserves angles

• It is monogenic (one to one)

• It maps circles into circles

• “Finally [39, p.124], if z1, z2, z3, z4 are four values of z and if t1, t2, t3, t4 are

the corresponding values of t, then

t1 − t2
t1 − t3

t4 − t3
t4 − t2

=
z1 − z2
z1 − z3

z4 − z3
z4 − z1

”

Therefore this was an ideal model of a conformal (angle preserving) mapping. In

particular the last property shows that it preserves cross ratio so it is also a

projective mapping. This then became the basis of Poincaré’s development of the

disc that bears his name. If we set |a/c| = 1 this maps the entire plane into the

open unit circle. Poincaré also showed that depending whether the value of

(a+ d)2 is less than, equal to, or greater than 4 this can be a model of spherical,

Euclidean, or hyperbolic geometries respectively.

In the above paper Poincaré focussed on real transformations where a, b, c, d are all

real. In a subsequent paper entitled Memoire on Kleinian Groups [40] he considers

a, b, c, d all complex in Equation 4.5. He shows that the Möbius transformation

that defines this mapping can also be arrived at by an even number of inversions in

the unit disc and finally is able to show a connection between the theory of linear

transformations and non-Euclidean geometry.
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Thus through the work of Klein, Beltrami and Poincaré a total connectivity had

been made between projective and non-Euclidean geometries and therefore also

Euclidean geometry.

‘
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Chapter 5

State of Geometry by Early

20th Century

5.1 Projective Geometry

Although projective geometry is still often taught as an extension of high school

geometry, the formal, axiomatic, approach is now usually favoured by

mathematicians.

A central part of this is duality, based on the concepts introduced by Gergonne but

further developed. No distinction is made between points and lines, or even planes.

They are simply abstract concepts that are connected by certain relationships.

Veblen and Young [53, p.29] call this connectivity on so that points are said to lie

on a line, lines lie on a point etc. They then state:

“Any proposition ... concerning the points and lines of a plane remains valid, if

stated in the on terminology, when the words point and line are interchanged.

“...Any proposition ... concerning the planes and lines through a point remains

valid, if stated in the on terminology, when the words plane and line are

interchanged.”

Another essential feature of projective geometry is the algebraic approach and the

use of homogeneous coordinates where x and y are replaced by x/z and y/z, see

Section 3.2.4. This enables significant simplifications, including:
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• The point at infinity appears naturally by setting z = 0, thus the projective

plane has an extra point. There is now no need to have exceptions to rules as

in for example any two lines meet at a point unless they are parallel

• The point at infinity leads to the distinction between ordinary points, where

z 6= 0, and Ideal points, where z = 0. This definition of Ideal points opens the

way for the work of Cayley and Klein on unifying projective geometry with

Euclidean and non-Euclidean geometry

• Equations of points, lines and planes appear in a more symmetrical form.

Thus a point can be denoted (a, b, c), meaning x = a, y = b, z = c, and a line

can be denoted by (ξ, η, ζ) meaning ξx+ ηy + ζz = 0. Further the

requirement that the point is on the line is aξ + bη + cζ = 0 which is also the

requirement that the line is on the point.

• Many relationships and transformations, e.g. between points and lines, can

be expressed via linear algebra and can therefore be written in matrix

notation.

Modern geometry also began to be stated in terms of group theory through the

work of Sophus Lie but here explained by Poincaré [42, p.9]:

“It is obvious that if we consider a change A, and cause it to be followed by

another change B, we are at liberty to regard the ensemble of the two changes A

followed by B as a single change which may be written A+B and may be called

the resultant change. (It goes without saying that A+B is not necessarily

identical with B +A.) The conclusion is then stated that if the two changes A and

B are displacements, the change A+B also is a displacement. Mathematicians

express this by saying that the ensemble, or aggregate, of displacements is a group.

If such were not the case there would be no geometry.” 16

Group theory implies symmetries and invariants. Thus two invariants of Euclidean

16Nowadays we would write B.A where Poincaré writes A + B.
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geometry are distance defined by

ds2 = dx2 + dy2

and the size of angles. One of the invariants of projective geometry is the cross

ratio which Cayley and Klein had shown to yield distance and angle through the

correct choice of the absolute.

Klein published his Erlangen Programme [26] in 1872. In it he sets out his view of

all the most important problems that need to be worked on in projective geometry.

In effect a research proposal valid for many years. These were all areas that he

found particularly interesting and it is notable that the main area he focusses on is

the various group theoretical approaches to geometry. He refers to the “group of

space-transformations” and defines the “principle group” as the group of all

“space-transformations by which the geometrical properties of configurations in

space remain entirely unchanged” [26, §1]. He was at the time working with Lie so

this obviously represented a very fruitful set of research areas for both of them. In

fact Klein was convinced that group theory was central to geometry and that

geometry should be the study of those elements which are invariant under certain

groups of transformations.

5.2 Euclidean Geometry

Naturally, Euclidean geometry is still taught at the high school level as it is much

easier conceptually and already contains all the tools needed for an understanding

of the physical world as we experience it. It also teaches a disciplined and rigorous

approach to problem solving.

The standard textbook is either a direct translation of The Elements or a

translation with commentary and explanation such as Playfair [37].

If one accepts the parallel postulate there has still been a problem with Euclidean

geometry until recently. The problem was the axioms as stated by Euclid.
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Mathematicians had for a long time agreed that the approach used by Euclid and

the definitions and axioms he specified were not rigorous enough. Heath refers to

disagreements between Plato and Aristotle over the definition of a point [15, p.155]

and this was even before the time of Euclid. This and similar disagreements did

not stop.

Recently Hilbert published his Foundations of Geometry [24] where he takes a

rigorous, axiomatic, approach to geometry but not by treating it as a subset of

projective geometry. Hilbert introduces a set of axioms of:- connection, order,

parallels, congruence and continuity; and shows how geometry can be rigorously

developed based on these axioms. He shows how the axioms are independent of

each other and how different, but equally valid, geometries can be defined by

rejecting certain axioms.

With this work Euclidean geometry has been made as rigorous as projective

geometry.

5.3 Non-Euclidean Geometry

Non-Euclidean geometry is now recognised as a completely rigorous discipline.

Through the approach of Klein it was shown to be a special case of projective

geometry, as is Euclidean geometry. Therefore non-Euclidean geometry is every bit

as complete and rigorous as Euclidean geometry. The writings of Riemann and

Poincaré have done much to cement this position.

This is now a very active research area, not just for mathematicians but also for

physicists and philosophers. Thus Helmholtz, primarily a physicist, was already, in

1876, considering the implications of a non-Euclidean geometry [23]. Minkowski is

a mathematician but refers to results from experimental physics and so relates

geometry to physics. [33]. Russell has developed geometry from a philosophical

viewpoint [47]. All the great recent mathematicians, including, Gauss, Riemann,

Hilbert and Poincaré, have made major contributions to this theory.
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Poincaré takes up the question of whether non-Euclidean geometry is true in his

1891 essay Non-Euclidean Geometries [41, p.104]:

“What, then, are we to think of the question: Is Euclidean geometry true?

“It has no meaning.

“We might as well ask if the metric system is true and the old weights and

measures are false, if Cartesian coordinates are true and polar coordinates false.

One geometry cannot be more true than another, only more convenient.

“Now Euclidean geometry is, and will remain, the most convenient”

Non-Euclidean geometry is studied for its own sake, as a beautiful theory. There is

also a great deal of speculation on what it tells us about the actual nature of

space. Is space flat or curved?
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Chapter 6

Space and Geometry

6.1 Connection of Geometry to the Real World

The earliest form of geometry, even before the Greeks, arose out of a need to

measure and build. Thus geometry started out as a real world tool. The Greeks

then developed it into an academic discipline in its own right. As geometry has

developed there have always been connections to reality. 17 However much of the

work up to the middle of the nineteenth century has been on developing geometry

as an abstract discipline.

As theories of different geometries such as hyperbolic and spherical geometries

became accepted as being internally self consistent the question was asked which of

these geometries matches the actual behaviour of space.

Thus we change from asking whether a geometry is a possible mathematical model

to asking whether it is the true model of our universe.

There are three possibilities which are characterised by the curvature of space:

• Zero curvature, flat space, sometimes called parabolic. This is the geometry

in which Euclid’s fifth postulate holds

• Negative curvature, hyperbolic space. Lobachevskii space where fifth

postulate is denied but other 4 postulates retained.

17Some obvious examples include: Pythagoras’ theorem, the renaissance artists work on perspec-

tive, cartography, Monge’s descriptive geometry; although many more examples could be cited
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• Positive curvature, spherical or Riemannian space. This must be a finite

geometry as we must also reject Euclid’s 2nd postulate. It is usually

described as finite but unbounded.

6.2 Possibilities of Higher Dimensions

Gauss was the first to develop a theory of curvature of space but it was specific to

a 2 dimensional surface with the radius of curvature in an orthogonal dimension.

This is most easily visualised for spherical geometry where we can consider a two

dimensional geometry on the surface of a sphere.

Helmholtz describes such geometry in his 1876 article On the Origin and Meaning

of Geometrical Axioms [23, p.54].

“Let us, as we logically may, suppose reasoning beings of only two dimensions live

and move on the surface of some solid body. We will assume that they have not

the power of perceiving anything outside this surface, but that upon it they have

perceptions similar to ours. If such beings worked out a geometry, they would of

course assign only two dimensions to their space. They would ascertain that a

point in moving describes a line, and that a line in moving describes a surface. But

they could as little represent to themselves what further spatial construction would

be generated by a surface moving out of itself, as we can represent what would be

generated by a solid moving out of the space we know.”

This same theme is then taken up and further developed be E. A. Abbott in his

little book Flatland [1], originally published in 1884, where he imagines two

dimensional characters: Triangles, Squares (himself), Pentagons etc and the

difficulties they would face in visualising a third dimension, even when a visitor, a

Sphere, arrives from a three dimensional world, spaceland , and tries to explain it.

What both these authors are hinting at is that it is perfectly feasible that we live

in a three dimensional world wrapped around some four dimensional object and we
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could be blissfully unaware of this.

Newcombe also expands on this view [35, p.94], when he describes a potential

universe positively curved in a fourth dimension in such a way that a geodesic

returns to its starting point after a distance 2D.

6.3 Einstein’s Relativity and Minkowski Space-Time

In 1905 Einstein published his Special Theory of Relativity under the unassuming

title On the electrodynamics of moving bodies [13]. This followed the experiment of

Michelson and Morley in 1888 which showed beyond reasonable doubt that the

speed of light is constant regardless of the speed of the emitter (Appendix C).

Einstein started from only two assumptions: [13, p.4]

1. “The laws by which the states of physical systems undergo change are not

affected, whether these changes of state be referred to the one or the other of

two systems of co-ordinates in uniform translatory motion.”

2. “Any ray of light moves in the stationary system of co-ordinates with the

determined velocity c, whether the ray be emitted by a stationary or by a

moving body.”

From which he was able to show that two observers in relative motion will obtain

different results if measuring the length of the same object. Of particular interest

to us is his rule for combining velocities. [13, p.12]

V =
v + w

1 + vw/c2

Or, if we chose units such that the speed of light, c, is one,

V =
v + w

1 + vw
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Thus velocities combine in the same way as do distances in hyperbolic space. So

relativistic vector space is a form of hyperbolic space but not exactly the same as

that developed by Lobachevskii and others since here we are talking about a finite

space with v < c.

Minkowski further developed Einsteins ideas in his lecture Space and Time [33].

He starts “Gentlemen. The views of space and time which I want to present to you

arose from the domain of experimental physics, and therein lies their strength.” A

clear reference to the Michelson Morley experiment. He continues “Their tendency

is radical. From now onwards space by itself and time by itself will recede

completely to become mere shadows and only a type of union of the two will stand

independently on its own”

He then proceeds, through purely geometrical arguments, to show that we can no

longer think purely of three spatial dimensions when observers are in relative

motion. Instead we must think in four dimensional “space-time”. In three

dimensional Euclidean space, the measure of length√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

is conserved. This is the geodesic or shortest distance between the two points.

Minkowski showed that if a body is in uniform motion relative to an observer the

conserved quantity, or geodesic, becomes√
c2(t1 − t2)2 − (x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2

so that in one spatial dimension the equation of motion becomes

c2t2 − x2 = constant

which is a hyperbola. So the geometry of space-time is hyperbolic between any

spatial dimension and the time dimension but not necessarily between any two

spatial dimensions.

Again this provides an example of a form of hyperbolic space but not the same

form as defined by Lobachevskii. Note also that both Einstein’s Special Relativity
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and Minkowski’s Space Time are only relevant when two observers are in relative

motion. The effects are zero when the observers are at rest relative to each other -

the case that Lobachevskii and others were studying.

6.4 Is Space Euclidean?

One of the big questions now becomes is space flat or curved and how can we tell?.

Lobachevskii [29] states that, as far as he can see, it will never be possible to

measure the angles of a triangle to sufficient accuracy to determine if their sum is

truly less than π.

“Hence there is no means, other than astronomical observations, to use for judging

the exactitude which pertains to the calculations of the ordinary geometry.

“This exactitude is very far reaching, as I have shown in one of my investigations,

so that, for example, in triangles whose sides are attainable for our measurement18,

the sum of the three angles is not indeed different from two right-angles by the

hundredth part of a second.” [29, p.45]

We have already mentioned Newcombe in Section 6.2, who develops a theory of a

universe positively curved in a fourth dimension in such a way that a geodesic

returns to its starting point after a distance 2D. He concludes [35, p.94]:

“It may also be remarked that there is nothing within our experience which will

justify a denial of the possibility that the space in which we find ourselves may be

curved in the manner here supposed. It might be claimed that the distance of the

farthest visible star is but a small fraction of the greatest distance, D, but nothing

more.”

We have already seen that a non-flat geometry implies an absolute standard of

18This is a triangle with as base the diameter of the earth’s orbit around the sun (approx. 300

million km) and a distant star as apex
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length but, since we are unable to detect any difference in the sum of the angles of

the largest triangles from 180◦, that standard of length must be greater than the

distance to the furthest stars.

We are still no closer to knowing whether the overall geometry of the universe is

Euclidean or hyperbolic or spherical and will probably never know. In fact

Poincaré sums up the impossibility of ever finding out in Science and

Hypotheses [43, p.305]

“I have on several occasions in the preceding pages tried to show how the

principles of geometry are not experimental facts, and that in particular Euclid’s

postulate cannot be proved by experiment. ...

“... If Lobachevskii’s geometry is true, the parallax of a very distant star will be

finite. If Riemann’s [spherical] is true, it will be negative. ... But what we call a

straight line in astronomy is simply the path of a ray of light. If, therefore we were

to discover negative parallaxes, or to prove that all parallaxes are higher than a

certain limit, we should have a choice between two conclusions: we could give up

Euclidean geometry, or modify the law of optics, and suppose that light is not

rigorously propogated in a straight line. It is needless to add that everyone would

look upon this solution as the more advantageous. Euclidean geometry, therefore,

has nothing to fear from fresh experiments.”

What Poincaré does not say is that it is even more impossible (if such a concept is

allowed) to determine by measurements that the universe is Euclidean, for to

prove flatness we must obtain an exact result for parallax which is impossible

since every measurement will be subject to experimental error.

Therefore we may justly paraphrase Poincaré and say “non-Euclidean geometry,

therefore, has nothing to fear from fresh experiments”.
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Chapter 7

Summary

In this essay we have followed the course of geometry up till 1910. We saw how this

essentially started with the ancient Greeks when Euclid produced what many still

consider to be the definitive work The Elements [15]. There was not much change

until the start of the nineteenth century. Then geometry took two distinct paths.

7.1 Path 1, Projective Geometry

This started as a descriptive approach through the work of Poncelet and others

and then became algebraic, initially through Möbius who also introduced

homogeneous coordinates. It introduced concepts such as duality and conservation

of cross ratio (defined for distances and angles). It was originally non-metrical but

Cayley was able to define a metric for both distance and angles through a concept

called The Absolute and in this way Euclidean geometry became a sub-set of

projective geometry.

Poncelet is generally credited with having started this work on projective

geometry, even though earlier mathematicians had already worked out properties

of cross ratio, so the whole development took place between 1822 and 1859.
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7.2 Path 2, Non-Euclidean Geometry

The development of non-Euclidean geometry started earlier. One could even say

that it started as soon as The Elements appeared but the first serious start was

the work of Saccheri (1733) and Lambert (1766). But Saccheri’s work contained an

error and Lambert’s was not known until it was republished by Engel and Stäckel

in 1895 [14]. So the first real introduction of non-Euclidean geometry that anyone

noticed was the paper by Lobachevskii originally published, but ignored, in

Russian in 1829 then in German in 1840 [29], closely followed by that of J. Bolyai

in 1832. So the start of non-Euclidean geometry is generally accepted to be in

1829 with Lobachevskii’s Russian paper.

It was not long before Gauss had started, and Riemann generalised, a theory of

curvature which was all in place by 1854. Following this there was significant work

by Beltrami, Poincaré and Klein to develop models for visualising this new

geometry and devise metrics which would combine non-Euclidean geometry with

projective geometry. This metric became known as the Cayley-Klein metric

because it built on the earlier work of Cayley and the absolute. It was published in

1871 and with that all of geometry became united within projective geometry.

7.3 Subsequent progress

The above, very brief, summary misses out most of the mathematicians who also

made significant contributions to geometry. In doing so it perhaps masks the fact

that throughout the nineteenth century and still up to 1910 both branches of

geometry were the subject of intense research and this is expected to continue.

Thus the developments in the nineteenth century transformed geometry from a

sleepy science or, at best, a tool to teach a rigorous approach to problem solving

into a very active area of teaching and research.

This includes the axiomatic approach, complete duality between geometric objects,
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application of group theory to geometry, the search for new geometries and the

continual question of whether the geometry of the universe is, or is not, Euclidean.
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Appendix A

Pole and Polar for a Circle

Figure A.1: Pole , P , and Polar, p, for a circle where the pole is outside the circle

We start with the diagramme in Figure A.1 for the special case where the conic is

a circle, centre O, and the pole, P , is outside the circle. Draw the tangents from P

to touch the circle at t and T ′. Draw the line TT ′ and call this the polar, p.

By symmetry, p is perpendicular to OP. Let them cut at the point Q. Then by

similar triangles we have OQ
OT

= OT
OP

and therefore OP.OQ = OT 2 = r2. The point

Q is called the reciprocal point to P .

We can use this as an alternative definition of pole and polar for the circle:-

Definition A.1. Given a circle, Γ of radius r, centre O, and a point P , the pole.

B8428581 57 Mark G Watts



58 A Pole and Polar for a Circle

Mark the point Q on OP such that OP.OQ = r2. The polar is the line through Q

perpendicular to OP .

Now consider any point, S, on p and draw the line OS. Drop a perpendicular from

P onto OS, to meet OS at U . By similar triangles we have OU
OP

= OQ
OS

. Therefore

OU.OS = OP.OQ = r2. Therefore the line UP is the polar corresponding to the

new pole S from Definition A.1, above. Further we see that the polar

corresponding to any point on p will pass through P .

Now consider Figure A.2 when the pole is inside the circle. Again identify Q, the

reciprocal point to P , i.e. OP.OQ = r2. The polar is the perpendicular to OP

through Q by Definition A.1. We can again show that any new pole, S, on p will

define a new polar passing through P .

This shows the relationship between pole and polar for a circle which applies

whether the pole is inside or outside the circle. If the pole is outside the circle the

polar will pass inside and vice versa.

Figure A.2: Pole and Polar for a circle where the pole is inside the circle

There are 3 special cases to be considered.

Mark G Watts B8428581



A Pole and Polar for a Circle 59

1. If P is on the circle the polar is the tangent at P .

2. If P is at the centre of the circle the polar is the circle at infinity.

3. If P is infinitely far from the centre, the pole is the diameter of the circle

perpendicular to OP .
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Appendix B

Models of Hyperbolic Geometry

Over a small region, hyperbolic geometry appears identical to Euclidean geometry.

For example the sum of the angles of a triangle approaches two right angles as the

length of the longest side of the triangle becomes small and approaches zero.

However small is a comparative term since we are unable to detect any differences

in the largest triangles we can measure. Clearly then, if we want to see some of the

special effects in non-Euclidean geometry we will need to be able to visualise what

happens at extreme distances and for extremely large triangles. This is where the

models to be described are valuable since they both map the whole of space into

the open unit disc, x2 + y2 < 1. The boundary at x2 + y2 = 1 is not a part of

either model because this corresponds to the points at infinity.

Both models were originally developed by Beltrami and published in two articles in

1868 [6] [7].

The two dimensional versions of both these models are described below.

B.1 Projective, Beltrami Disc, Klein Disc Model

This starts with a geodetic projection, Figure B.1, from the infinite hyperbolic

plane, assumed to be at height a above the unit sphere, onto the half sphere

x2 + y2 + z2 = 1, z > 0. This is followed by a vertical projection from the half

sphere onto the plane z = 0. Clearly the whole of the infinite plane will be mapped

into the open unit disc.
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Figure B.1: Projections to obtain Beltrami (Klein) disc. First a geodetic projection

from the infinite plane to the surface of a hemisphere, then a vertical projection to

the disc.

Some properties of the Klein disc model are:

• Geodesics in the hyperbolic plane are represented by straight lines, chords, in

the model.

• Angles are not preserved and circles are not mapped into circles.

• Parallel lines (in the sense of Lobachevskii) meet on the perimeter of the disc

(at infinity).

This is shown in Figure B.2 where lines BA, CA and DA are parallel. All lines in

this diagramme have been drawn as chords, extended to touch the periphery circle,

so that they represent lines stretching to infinity in both directions. Triangle JKL

is formed from 3 geodesics: AC, GH and EF . Naturally the sum of the angles is

180◦ in the model whereas the angles in the hyperbolic plane will sum to less than

two right angles.

The metric of length, Cayley-Klein metric, can be considered with respect to

geodesic GH. The perimeter of the disc is the absolute so that G and H are both

ideal points. Then the length of the segment JK, which we will call d(JK), is

Mark G Watts B8428581



B.2 Conformal, Poincaré Disc Model 63

Figure B.2: Beltrami (Klein) disc, all straight lines represent geodesics, BA, CA

and DA are parallel (meet at infinity)

given in terms of the cross ratio of the four points G, J,K,H by [20, p.233]

d(JK) = −1

2
log

(
GJ

GK
÷ HJ

HK

)
Note that this implies

d(MJ) = −1

2
log

(
GM

GJ
÷ HM

HJ

)

d(MK) = −1

2
log

(
GM

GK
÷ HM

HK

)
so that

d(MK) = d(MJ) + d(JK)

and the distance metric is correctly additive.
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Figure B.3: Projections to obtain Poincaré disc. First a geodetic projection from

the infinite plane to the surface of a hemisphere, then a stereographic projection

from the base of the sphere to the tangent plane at z = 1.

B.2 Conformal, Poincaré Disc Model

The starting point is exactly the same as for the Klein disc but the second

projection, Figure B.3, is upwards from the base of the sphere. This then needs

scaling to obtain the unit disc. It has the following properties.

• It is conformal meaning that it preserves angles.

• Circles are mapped into circles although their centres are not in general

mapped to the centre of the mapped circle.

• Geodesics are mapped into segments of circles meeting the perimeter at right

angles.

• A length x is mapped into a length tanh−1(x)

Figure B.4 shows essentially the same configuration as Figure B.2 except that the

former shows it in the Klein disc, the latter in the Poincaré disc.
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Figure B.4: Poincare disc, all geodesics are arcs of circles meeting the perimeter at

right angles, BA, CA and DA are parallel (meet at infinity)

A length is defined in exactly the same way as in the Klein disc, except that the

distances to be used in the cross ratio are straight line Euclidean distances, not

arcs of the geodesic curves.
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Appendix C

Michelson Morley Experiment

In the nineteenth century there was general agreement that light was a wave form

rather than a stream of particles. This was based on demonstrations of

interference and diffraction of light that are easy to explain for a wave form but

not for particles. The problem then was that, if light is a wave, there must be a

medium in which it is propagated. This medium was called the luminiferous aether

and needed to posses strange properties: it had to be highly rigid to account for

the high speed of light and it had to have negligible resistance to the motion of the

planets. There were other difficulties with the aether theory including Maxwell’s

equations [31, p.579] which pointed to a constant speed of light whereas theory

said that the speed of light should be constant relative to the aether so the local

speed should be a function of the earth’s speed through the aether.

Michelson and Morley [32] set out to measure the speed of the earth through the

aether by measuring the effect this had on the speed of light.

The experiment was very simple in principle: two beams of light are projected at

right angles through the same distance, reflected back and the time difference

between the two beams is measured. Assuming that the motion through the aether

is not in a direction bisecting the two beams there should be a time difference

which can be used to measure the speed of the earth through the aether.

The experimental reality involved splitting a single beam into two beams,

reflecting each back and forth many times before recombining them and observing

the interference fringes. The whole apparatus, which must have weighed several

tons, was floating on a bowl of mercury so that it could be rotated through
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different angles to observe any changes due to the different directions of the two

beams relative to the aether.

They measured changes in the difference between the two transit times rather than

measuring the differences directly. This meant that they could allow the two

returning beams to interfere and count the interference fringes. These fringes were

counted as the instrument was rotated giving a very precise measure of any change

in the speed of light due to the different orientation of the two beams.

The main source of the earth’s movement through the aether is the rotation of the

earth around the sun which gives a speed of approximately 3× 104 m/s or 0.01

percent of the speed of light. There should also be a smaller effect due to the spin

of the earth which is approximately 460 m/s at the equator.

The final apparatus was certainly sensitive enough to detect any change due to the

earth’s rotation around the sun but detected nothing. The experiments were

carried out at different times of the day to identify any small differences due to the

earth’s rotation. Again nothing was found. The authors conceded that there is a

small possibility that the motion of the solar system through the universe could be

canceling out the speed of the earths trajectory so proposed repeating the

experiment in three monthly intervals. Naturally nothing was found.

Michelson and Morley finally concluded that they could not measure any motion of

the earth through the aether. They rejected the argument that the earth locally

drags the aether along with it as being inconsistent with other theories and results.

This has been explained at some length because it is one of the most famous “null

result” experiments and because this led directly to the realisation that the speed

of light was indeed constant and independent of the speed of the emitter and the

receiver, and hence to Einstein’s theory of relativity. In a sense this mirrors the

many attempts to prove the parallel postulate by finding a contradiction. These

again led to a “null result” which then directly led to the development of a

beautiful new geometry.
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The immediate consequence of this experiment was not a rejection of the aether

but rather an attempt to explain the effect in a way that involved the aether.

Lorentz [30] proposed that the motion somehow compresses an object so that its

length in the direction of movement through the aether is reduced, but was unable

to find any possible mechanism. This is the famous Lorenz contraction

l′ = l
√

(1− v2/c2)

which was developed by Lorentz on the basis that it fitted the facts and was then

re-derived and explained by Einstein as part of the special theory of relativity.
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